进入高二就要开始为高考打基础了,这个时候数学学习一定要多多练习弄懂解题思路,做到熟能生巧,才可以为将来的考试做好准备,本课件为高二数学直播课,适合高二学生多多练习。
数学解题的技巧
为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。
一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。
基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。1、寻求中间环节,挖掘隐含条件:
在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。
因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。
2、分类考察讨论:
在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。
3、简单化已知条件:
有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。
4、恰当分解结论:
有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。
觉得自己数学能力较差、不懂如何学习数学的同学都可以下载本课件学习,里面包含了讲义和视频课程,内容全面,可以自己根据老师讲解学习,多做题目,一定可以更好地学习数学!
声明:本站资源来自会员发布以及互联网公开收集,不代表本站立场,仅限学习交流使用,请遵循相关法律法规,请在下载后24小时内删除。 如有侵权争议、不妥之处请联系本站删除处理! 请用户仔细辨认内容的真实性,避免上当受骗!